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The flow generated by the breaking of free-surface waves of different initial steepnesses
is simulated numerically. The aim is to investigate the role played by the breaking
intensity on the resulting flow. The study, which assumes a two-dimensional flow,
makes use of a two-fluids Navier–Stokes solver combined with a Level-Set technique
for the interface capturing. The evolution of periodic wavetrains is considered.
Depending on the initial steepness ε, the wavetrain remains regular or develops
a breaking, which can be either of spilling or plunging type. From the analysis of
the local strain fields it is shown that, in the most energetic phase of plunging
breaking, dissipation is mainly localized about the small air bubbles generated
by the fragmentation of the air cavity entrapped by the plunging of the jet. The
downward transfer of the horizontal momentum is evaluated by integrating the flux
of momentum through horizontal planes lying at different depths beneath the still
water level. From weak to moderate breaking, increase in the breaking intensity
results in growing transfer of horizontal momentum, as well as thickening of the
surface layer. Beyond a certain breaking intensity, the larger amount of air entrapped
causes a reduction in the momentum transferred and the shrinkage of the layer.
Quantitative estimates of the amount of air entrapped by the breaking and of the
degassing process are provided. A scaling dependence of the amount of air entrapped
by the first plunging event on the initial steepness is found. A careful analysis of the
circulation induced in water by the breaking process is carried out. It is seen that in
the plunging regime the primary circulation induced by the breaking process scales
with the velocity jump between the crest and the trough of the wave.

The limits of the main assumptions of the numerical calculations are analysed. It is
shown that up to half-wave period after the breaking onset, the Reynolds number of
the simulation does not significantly affect the solution. In order to further support
the findings, an estimate of the uncertainty of the numerical results is derived through
several repetitions of the numerical simulation with small perturbations of the initial
conditions.

1. Introduction
Breaking of ocean waves is of relevant interest because of its implications in many

physical, chemical and biological processes that take place at the air–water interface.
Wave breaking is responsible for the generation of free-surface turbulence, dissipation
of the wave energy and enhancement of the momentum, heat and gas transfer between
air and water. In the naval context, the breaking of the bow wave in fast ships with
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pronounced flare causes the entrapment of air bubbles that travel along the hull,
eventually flowing into the wake and making it visible from high altitude radars.

The breaking of free-surface waves is characterized by a very wide range of scales.
Large-scale breaking waves are characterized by strong turbulence with a significant
amount of drops, spray and bubbles about the breaker front (whitecaps). At the
shortest scales, the stabilizing actions of gravity and surface tension dominate over the
disrupting effect of the turbulence. The development of the plunging jet is suppressed
and only a small amount of air, if any, is entrained (Brocchini & Peregrine 2001). Such
small-scale breaking was also called micro-breaking by Banner & Phillips (1974).

A lot of experimental studies have been done in this field. Quasi-steady breaking
waves past a submerged hydrofoil were studied by Duncan (1981, 1983) in order to
estimate to which extent the occurrence of breaking contributes to the wave drag
and, in turn, to the energy dissipation. Rather a complete investigation of unsteady
breaking waves was done by Rapp & Melville (1990). They exploited the dispersion
of deep-water waves to induce breaking and used a laser Doppler technique to
measure the velocity field. Through ensemble average over several repetitions of
the experiment, the mean and turbulent velocity components were distinguished. It
was found that the breaking significantly enhances the energy dissipation. It can be
responsible for the dissipation of as much as 40 % of the initial energy content, 90 %
of which is dissipated within four-wave periods after the breaking onset. In Bonmarin
(1989) the time–space evolution of breaking waves was analysed with attention to
the geometric properties of the free-surface profiles. Rather detailed descriptions of
the splash up occurrence and of the vorticity structures originated in water as a
consequence of the breaking process were provided.

The development of Particle Image Velocimetry (PIV) techniques has made more
refined investigations of the flow field inside breaking waves much simpler and faster.
The different patterns characterizing the wavy flow past a submerged hydrofoil when
varying the Froude number were investigated by Lin & Rockwell (1995). They showed
that at the lowest Froude number the solution is dominated by surface tension and
is characterized by a single broad crest with no significant amount of vorticity
generated. At intermediate Froude numbers the solution exhibits a capillary pattern
and vorticity is mainly associated to the free-surface curvature. Further increase in the
Froude number generates a quasi-steady breaker with flow separation taking place
at the breaker toe. The flow field beneath quasi-steady breakers was also analysed
by Dabiri & Gharib (1997) who showed that the surface current associated to the
breaking is the dominant source of vorticity. A careful investigation of the unsteady
development of gentle spilling breakers was done by Qiao & Duncan (2001). They
showed that in the initial stage of the breaking, a bulge forms about the wave crest
but no vorticity is shed. After a short while, the bulge begins to slide down along
the forward face of the wave, and a shear layer develops because of the interaction
between the gravity induced downslope flow near the free-surface and the underlying
upslope flow of the wave.

Despite all the work done in the spilling breaking case, less is available for the
unsteady development of plunging breaking. An experimental study of the velocities
and accelerations originated in steep deep water waves just before the plunging
breaking event was carried out by Grue & Jensen (2006). It was shown that
overturning events are characterized by horizontal accelerations up to 1.1g and
vertical acceleration up to 1.5g, g being the acceleration of gravity. The turbulent
flow generated by breaking waves in water of intermediate depth was investigated by
Chang & Liu (1999). Through the ensemble average of different repeats of the same
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experiment, the mean and turbulent components of the flow were distinguished. The
different contributions in the equation of turbulent energy budget were evaluated and
it was shown that the turbulence advection, production and dissipation were equally
important while the turbulent diffusion term was almost negligible. Unfortunately,
owing to the light scattered by air bubbles, measurements were done only outside
the aerated region. More recently, Kimmoun & Branger (2007) performed detailed
PIV measurements of water waves propagating and breaking on a sloping beach and
estimated the void fraction on the basis of the light intensity analysis.

In Melville, Veron & White (2002) unsteady breaking waves were generated through
the same dispersive focusing technique used by Rapp & Melville (1990). A detailed
description of the velocity field in a wide area about the breaking region was obtained
by the reconstruction of a mosaic from tiles of PIV measurements. A careful analysis
of the velocity and vorticity fields was done and an ensemble average among several
repetitions of the experiment was used to distinguish the mean and the fluctuating
velocity components. Also in this case, owing to the limits of the PIV technique,
measurements started three-wave periods after the breaking onset, when the larger
bubbles degassed. Hence, the description of flow during the most energetic phase of
the breaking is missing.

The important role played by the air entrainment in the energy dissipation of
breaking waves was discussed by Lamarre & Melville (1991). Through measurements
of the void fraction, they showed that a large fraction of the energy dissipated by
the breaking, between 30 % and 50 %, is spent against buoyancy in entrapping air
bubbles. More recently, a similar experimental investigation was done by Blenkinsopp
& Chaplin (2007), who showed a remarkable degree of similarity between different
breaking types. Also in this case it was found that, for strong plunging breaking, at
least 14 % of the energy dissipated by the breaking is spent in entraining air and
generating splash.

The recent development of numerical approaches able to deal with complex free-
surface flows even in the presence of significant changes in the interface topology has
largely widen the use of computational tools in this context. In Scardovelli & Zaleski
(1999), a survey on the different numerical techniques is provided. Of course important
limitations exist owing to the high computational effort required. Direct numerical
simulations are generally limited to low Reynolds numbers. Moreover, numerical sim-
ulations of two-fluids flows are often conducted using a two-dimensional assumption
(Song & Sirviente 2004; Hendrickson & Yue 2006). Only recently few attempts have
been made to simulate the three-dimensional wave breaking flows. Three-dimensional
vortex structures generated by the breaking of a wave approaching the surf zone were
investigated by Watanabe, Saeki & Hosking (2005) using a single fluid modelling. Two-
fluids numerical simulations of the three-dimensional flow generated by the breaking
of a two-dimensional wave were done by Lubin et al. (2006). Therein, the differences
between two- and three-dimensional results were analysed. It was shown that the
three-dimensional turbulence enhances the energy dissipation, but the differences are
less than 5 % up to half-wave period after the breaking onset. The difference in the
energy contents of the two- and three-dimensional simulations rises up to 10 % two
and a half periods after the breaking onset and remains constant afterwards.

The above considerations explain why, in spite of the limits of the two-dimensional
low-Reynolds-number numerical simulations, results obtained so far and available
in literature are in reasonably good agreement with the experimental observations.
The breaking of steep free-surface waves was investigated by Chen et al. (1999), who
showed that soon after the plunging event the energy takes a t−1 decay trend and that
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a large fraction of the initial energy content is dissipated within three-wave periods
after the breaking. Both results are consistent with the experimental findings by Rapp
& Melville (1990) and Melville et al. (2002).

Because of the lack of the three-dimensional component, two-dimensional numerical
simulations do not capture the interaction between the Langmuir circulation and the
breaking occurrence (Thorpe 2004). Their mutual interaction plays an important role
in the vertical transfer of the horizontal momentum. However, the scales at which the
breaking injects momentum into the boundary layer are much shorter than those at
which the interaction takes place, and the computational cost of three-dimensional
numerical simulations over the entire range is still prohibitive. Instead of facing
such considerable burdens, an approach of intermediate complexity was developed
by Sullivan, McWilliams & Melville (2004, 2007). Rather than a detailed description
of the wave breaking process, a linearized free-surface condition is used and the
occurrence of breaking is modelled as a stochastic forcing term in the momentum
equation. The forcing term is defined in terms of space–time shape functions which
are designed in order to match the laboratory measurements. Through such numerical
model, they studied the interaction between the breaking event and the Langmuir
circulation and showed how the Langmuir circulation affects the momentum transfer
and energy dissipation operated by the breaking process and, conversely, how the
occurrence of breaking and the related vorticity is important for the generation of
new Langmuir circulation. At the present stage of development, the stochastic model
used in Sullivan et al. (2007) does not account for the air entrainment, i.e. density
variations and buoyancy are not included.

What makes the two-fluids numerical model very attractive is the possibility of
achieving a highly refined description of the flow field in both fluids in a non-
intrusive manner. In this sense, such approaches can be of help for the definition of
the forcing term in oceanic boundary layer models in the case of breaking with large
amount of air entrained. Even the two-dimensional assumption is not too restrictive,
as long as the interest is in the early stage after the breaking onset. This is just the
stage during which large air bubbles are entrapped, making PIV measurements highly
challenging.

In the present paper the two-fluids flow generated by the breaking of a two-
dimensional periodic wavetrain is simulated. The numerical model is based on an
unsteady two-dimensional Navier–Stokes solver for a single incompressible fluid
whose physical properties vary smoothly across the interface. The free-surface between
air and water is captured through a Level-Set technique (Iafrati, Di Mascio &
Campana 2001). The study is carried out in a computational domain with periodic
boundary conditions at the two sides, and initial conditions are essentially the same
as in Chen et al. (1999). The main difference concerns the density ratio which, in the
present work, is fixed as the real one for air and water. The initial steepness of the
wavetrain is varied from low values, leading to regular waves, up to large values that
give rise to strong plunging breaking.

Several aspects of the flow are investigated with particular emphasis on the changes
operated by the breaking intensity. The time history of the total energy and of the
viscous dissipation are analysed and the important role played by the fragmentation
of the air cavity on the dissipation is highlighted. The vertical fluxes of the horizontal
momentum across several horizontal planes lying at different depths is calculated
and the surface current induced by the breaking process is analysed on the basis of
the velocity profiles. The air entrainment and the degassing phase are qualitatively
described on the basis of the free-surface profiles. Quantitative estimates of the amount
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of air entrapped by the breaking and of the degassing process are derived as well. A
scaling law for the amount of air entrapped by the first plunging event as a function of
the steepness is found. A more insightful analysis of the vorticity field and of the total
circulation is presented, with particular regard to the role played by the reconnection
process on the generation of vorticity. The effect of the Reynolds number on the
energy dissipation and on the induced circulation is evaluated. Finally, an estimate
of the uncertainty of the numerical results is achieved through the repetition of the
same calculation with small perturbations of the initial conditions.

2. Numerical model
2.1. Two-fluids Navier–Stokes solver

The unsteady two-fluids flow of air and water induced by the breaking of free-surface
waves is simulated numerically as that of a single incompressible fluid whose density
and viscosity vary smoothly across the interface. With this assumption, the continuity
and momentum equations given in generalized coordinates by Zang, Street & Koseff
(1994) are rewritten as
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respectively, where the variation of density and viscosity across the computational
domain is accounted for (Iafrati & Campana 2003). In the above equations ui is the
ith Cartesian velocity component, δij is the Kronecker delta,

Um = J −1 ∂ξm
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uj (2.3)

is the volume flux through the ξm surface and J −1 is the inverse of the Jacobian.
Non-dimensional ratios are defined as
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for Froude, Reynolds and Weber numbers, respectively. Here, Ur and Lr are reference
values for velocity and length, σ is the surface tension coefficient, ρw and μw are
the density and dynamic viscosity of water, respectively, which are also assumed as
reference values. Surface tension effects are modelled as a continuum force acting
on a thin layer about the air–water interface (Brackbill, Kothe & Zemach 1992).
Functionally, this is expressed as the gradient of the smoothed Heaviside function
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(2.5)

with d denoting the signed distance from the interface, taken positive in water and
negative in air. In the surface tension contribution to the momentum equation (2.2),
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the smoothed Heaviside function (2.5) is used with δ = δT , where δT is half of the
thickness of the region across which surface tension forces are spread.

Finally, in (2.2)
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are metric quantities and κ is the local curvature.
The numerical solution of the system of Navier–Stokes equations is achieved

through a non-staggered collocation of variables: Cartesian velocities and pressure
are defined at the cell centres, whereas volume fluxes are defined at the mid-point of
the cell faces (Zang et al. 1994). The system is integrated in time with a fractional
step approach: the pressure contribution is neglected when integrating the momentum
equation in time (Predictor step) and it is reintroduced next when the continuity of
the velocity field is enforced (Corrector step). The diagonal part of the first viscous
contribution in (2.2) is computed implicitly with a Crank–Nicolson scheme with the
aim of avoiding the constraints of the corresponding stability limit. All other terms
are computed explicitly with a three-steps low storage Runge–Kutta scheme (Rai &
Moin 1991). The grid being fixed in time, the discretized form of the momentum
equation at the step n is
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The coefficients αi, γi and ζi are reported in Rai & Moin (1991) and in literature
cited therein. In the above equations, for the sake of clarity, a compact notation is
used for the convective, diffusive and surface tension contributions:
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indicates the gradient operator in generalized coordinates.
The pressure corrector φ is found by enforcing the continuity of the velocity field

at the end of the predictor sub-step (Chorin 1967; Kim & Moin 1985). Once the
auxiliary velocity field is found, say ûl

i , the fluxes Û l
m at the mid-point of the cell

faces associated to this velocity field are computed through (2.3). Cartesian velocity
components at the mid-point of the cell faces are obtained by a quadratic upwind
interpolation of the values at the cell centres. In terms of fluxes, the corrector step
can be written as
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and, by enforcing the continuity equation (2.1) to Ũ l
m, the following Poisson equation

for the pressure corrector is obtained:
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When the velocity field is assigned throughout the boundary of the computational
domain, (2.7) provides Neumann boundary conditions for the Poisson equation (2.8).
The pressure field is related to the pressure corrector term by the equation:

Ri(p̃
l) = (ρ̃lJ −1 − αl
tDI )
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l)

ρ̃lJ −1

)
, (2.9)

solution of which in generalized coordinates is not straightforward. For this reason
an approximate estimate of the pressure field is usually derived as (Rosenfeld, Kwak
& Vinokur 1991)

Ri(p̃
l) � Ri(φ̃

l) ⇒ p̃l = φ̃l + O(
t). (2.10)

As the pressure field is not used in the numerical calculation, this choice does not
affect the second-order accuracy of the time integration of the system of differential
equations.

The time step is adjusted so that the maximum Courant number is 1.5, below
the upper limit allowed by the three-steps Runge–Kutta which is

√
3. However, an
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additional constraint to the time step


t < We

√
(1 + ρa/ρw)

4π

x3

arises from the use of an explicit scheme for the surface tension effects (Brackbill
et al. 1992) and further limitations may also be necessary as not all of the viscous
contributions are treated implicitly.

Equation (2.8) is discretized by using a second-order accurate centred scheme. Owing
to the large density jump occurring at the interface, the corresponding linear system
is highly ill conditioned and this makes the solution of the Poisson equation very
challenging and time demanding. The system is preconditioned by an incomplete LU
decomposition and it is solved through a biconjugate gradient stabilized (BiCGstab)
algorithm (van der Vorst 1992).

2.2. Interface capturing technique

The distribution of density and viscosity inside the fluid domain are given as a
function of the signed distance from the interface d according to the equation

f (d) = fa + (fw − fa)HδP
(d), (2.11)

where the parameter δP is half of the thickness of the region across which the density
and viscosity jumps are spread. In the numerical calculations the parameter δP is
chosen so that the density and viscosity jumps are spread across at least five-grid
cells. Detailed studies of the role played by δT and δP on the free-surface dynamics
are provided in Iafrati et al. (2001) and Iafrati & Campana (2005).

The free-surface motion is described with a Level-Set approach (Sussman, Smereka
& Osher 1994). At the beginning of the time step the function d(x, t) is initialized as
the signed normal distance from the interface, with d > 0 in water and d < 0 in air.
The function d is advected in time with the flow as a non-diffusive scalar using the
equation

∂d

∂t
+ u · ∇d = 0, (2.12)

and, according to the kinematic condition, at the end of each time step the interface
is located as the zero level of the updated field d(x, t + 
t). The transport equation
(2.12) is discretized with the same scheme adopted for the convective terms, and
integrated in time through the three-steps Runge–Kutta, thus obtaining

d̂ l = d̃ l−1 + γl
tC(d̃ l−1) + ζl−1
tC(d̃ l−2) (2.13)

with d̃0 ≡ dn, d̃3 ≡ dn+1 and
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.

As the function d is defined at the cell centres, in discrete form the interface is
reconstructed by locating the d = 0 level within the cells of the staggered grid built on
the cell centres. A bilinear interpolation of the values the function d takes at the four
nodes of the cell is used for this purpose. Although this choice implies the interface
reconstruction being only first-order accurate in space, it allows the identification of
interface portion inside one cell without involving the values the function d takes at
the nodes of the contiguous ones. This approach makes the reconstruction procedure
very simple even in the presence of complex interface topologies.
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For the interface reconstruction, the model first seeks the intersections of the d =0
level with the faces of the staggered cell. Of course, if the function d takes the same
sign at the four nodes of the cell, there are no intersections. This implies that closed
d = 0 contours smaller than one grid cell or filaments thinner than the cell size cannot
be represented. The intersections between the interface and the cell faces are located
through a linear interpolation of the values the function takes at the two nodes
of the face. If only two intersections with the cell boundary are found, a bilinear
interpolation of the values taken at the four nodes is built and exploited to locate
an additional intersection point inside the cell. In this case the interface portion lying
inside the cell is described by two adjacent segments. When four sign changes are
found moving along the cell boundary, four intersections with the cell faces can be
identified, thus giving rise to two disjoint interface segments (Iafrati & Campana
2003).

When the new interface configuration is reconstructed, the function d is reinitialized
by computing at each cell centre the minimum distance from the set of interface
segments. In order to avoid the artificial motion of the interface during the
reinitialization, the distance function is not reinitialized on the nodes belonging
to cells crossed by the interface. More details about the reinitialization procedure are
given in Iafrati et al. (2001) and Iafrati & Campana (2003). In the latter the effect of
the grid spacing and of the thickness of the transition region on the mass conservation
are discussed as well.

As discussed in § 3.5, in numerical simulations of breaking waves mass conservation
is made very challenging by the fragmentation of the entrapped air cavity into
small air bubbles and filaments. When dimensions of bubbles or filaments become
comparable to the grid spacing, those structures disappear and the corresponding
area is filled by water. The only possibility of achieving a good conservation of mass
together with an accurate description of the dynamics of the smallest bubbles is to use
interface tracking approaches in which the interface is followed in a Lagrangian way
(Unverdi & Tryggvason 1992). However, in those methods the handling of changes
in the interface topology is rather complicated.

The most interesting aspect of interface capturing methods lies in their capability of
dealing with changes in the topology. As discussed in Iafrati & Campana (2005), in the
level-set approach the interface topology changes as a consequence of a variation of
the topology of the subsets where d takes positive and negative signs. This variation
implicitly occurs during the integration in time of the transport equation (2.12)
although the change in the topology becomes evident only when the new interface
configuration is reconstructed from the new distribution of the distance function.

Once the distance function is reinitialized the local density and viscosity values
are given by (2.11). Due to the smoothing of the step function across the d =0
level, a layer of intermediate density and viscosity exists nearby the interface. As a
consequence, pure air (or pure water) density can be found in bubbles (or drops)
only if their thickness is larger than 2δP . Below that size, bubbles or drops cannot be
considered as fully resolved.

3. Effect of the steepness on wave breaking flows
3.1. Initial free-surface shape and velocity field

A periodic wavetrain is initialized, evolution of which is simulated numerically in
a computational domain with periodic boundary conditions at the two sides. As in
Chen et al. (1999), the initial free-surface profile is assigned as a wave in infinite depth
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calculated up to the third order in the wave amplitude a, that is

η(x) =
a

λ

(
cos(kx) +

1

2
ε cos(2kx) +

3

8
ε2 cos(3kx)

)
, (3.1)

where k = 2π/λ is the fundamental wavenumber, ε = ak the initial wave steepness
and λ the fundamental wavelength. The wavelength λ is taken as reference value for
lengths whereas Ur =

√
λg is assumed as reference value for the velocities. The initial

velocity field in water is derived from the velocity potential related to the free-surface
profile (3.1), which is

u = Ωa exp(ky) cos(kx), v = Ωa exp(ky) sin(kx), (3.2)

where Ω =
√

gk(1 + ε2) accounts for the nonlinear correction (Whitham 1974). It is
worth remarking that (3.1) does not exactly represent a third-order Stokes wave as
the secular term is missing (Grue et al. 2003). The purpose of the present paper is to
generate breaking of different intensities and to investigate the resulting flow. In this
regard the lack of the secular term has only a minor effect on the results presented,
as discussed later on.

At the beginning of the simulation the fluid is assumed to be at rest in the air
domain, and the motion occurring in air in the later stage is induced by the momentum
exchange at the interface operated by both tangential and normal stresses. No-slip
boundary conditions are assigned at the top and bottom boundaries. As the water
depth is of the order of half of the fundamental wavelength, this choice does not affect
remarkably the dynamics of the breaking process (Chen et al. 1999). Also, for such
wavelength–depth ratio, the energy loss by bottom friction is essentially negligible
(Lighthill 1978).

In order to investigate to which extent the initial wave steepness changes the
phenomena involved in the breaking event, numerical simulations are carried out by
varying ε in the range 0.2–0.65. In all cases it is assumed

We = g1/2λ

√
ρw

σ
= 100,

which corresponds to water waves of about 30 cm wavelength. At such wavelength
the Reynolds number is

Re =
ρwg1/2λ3/2

μw

� 4.4 × 105.

Even in the two-dimensional case, numerical simulations of flows at such high
Reynolds number would require a very large computational effort for all the relevant
scales of the flow to be resolved. For this reason numerical simulations are carried
out at Re =104. Only in the case ε = 0.55 the numerical simulation is repeated using
Re = 105 and comparisons are established in order to analyse the role played by the
Reynolds number on several aspects of the resulting flow.

The density ratio is assumed to be equal to the real one for air and water, which
is ρa/ρw = 0.00125, whereas the viscosity ratio μa/μw = 0.04, the same used in Chen
et al. (1999). The computational domain is one fundamental wavelength wide and
one fundamental wavelength high, that is x, y ∈ [−0.5, 0.5], and it is discretized by
512 × 512 grid cells, uniformly spaced. For the largest steepness, ε = 0.65, large drops
with high upward velocity components are generated by the plunging of the jet.
Therefore, a higher computational domain, with y ∈ [−0.5, 1.5] and a 512 × 1024
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ε Re Nx × Ny (xmin, xmax) × (ymin, ymax) δP = δT

0.2/0.60 104 512 × 512 (−0.5, 0.5) × (−0.5 × 0.5) 0.005
0.65 104 512 × 1024 (−0.5, 0.5) × (−0.5 × 1.5) 0.005
0.55 105 1024 × 1024 (−0.5, 0.5) × (−0.5 × 0.5) 0.005

Table 1. Parameters used for the numerical simulations.

grid, is used to prevent the motion of the drops to be strongly affected by the upper
boundary. In the numerical simulations it is assumed δP = δT =0.005 which means
that density and viscosity jumps and surface tension forces are spread across a region
which is about five grid cells thick. As lengths are scaled by the wavelength, for a
30 cm wave such thickness corresponds to 3 mm. For the sake of the clarity, the
parameters of the simulations are given in table 1.

A 1024 × 1024 grid is used for the numerical simulation at Re = 105 with the aim
of achieving a better description of the smaller scales expected. The same values for
the thickness of the transition region δP = δT = 0.005 are adopted though. This is
needed in order to have a larger number of grid points inside the transition layer,
which prevent the development of spurious instabilities. It is worth remarking that
this discretization is not enough to resolve the finest details of the flow at such high
Reynolds number. However, the comparisons with results obtained with a coarser
grid, not shown here, indicate that a satisfactory agreement is achieved at least in
terms of global quantities like total energy and circulations in the early stage after
the breaking onset. In a later stage of the process, it is expected that smaller scales, as
well as three-dimensional effects neglected here, become more important in governing
the turbulence.

With the aim of deriving an estimate of the uncertainty in the numerical results,
for the case with ε =0.60, several repetitions of the simulation are carried out
by introducing small perturbations to the initial conditions. In some sense, this
attempts to mimic what usually happens in the experiments where, due to the
residual turbulence level and/or small perturbations in the initial free-surface profile,
differences in the breaking dynamics occur, although the main features are well
repeatable. If the present numerical model is used with the same initial and boundary
conditions, it generates exactly the same results. Therefore, the initial boundary
conditions are artificially perturbed by introducing a small shift to the argument in
the initial conditions (3.1) and (3.2). The shift, which is a fraction of the cell size 
x,
is enforced by replacing the argument x with x − r
x, so that (3.1) and (3.2) become

η(x) =
a

λ

[
cos(k(x − r
x)) +

1

2
ε cos(2k(x − r
x)) +

3

8
ε2 cos(3k(x − r
x))

]
, (3.3)

u = Ωa exp(ky) cos(k(x − r
x)), v = Ωa exp(ky) sin(k(x − r
x)), (3.4)

where r ∈ (0, 1) is a randomly assigned coefficient.

3.2. Free-surface dynamics and vorticity production

The analysis of the interface evolution is the simplest and the most efficient tool for
illustrating the way the increasing steepness alters the wave dynamics. As indicated
in table 2, the wavetrain remains regular for ε = 0.2 and 0.3 and breaks for ε � 0.33.
The breaking is of the spilling type for ε = 0.33 and 0.35 whereas it is of the plunging
type for ε � 0.37. The above results agrees with the analysis done by Grue & Fructus
(in press), who showed that the maximum steepness for non-breaking third-order
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ε Regular Spilling Plunging

0.20 X
0.30 X
0.33 X
0.35 X
0.37 X
0.40 X
0.50 X
0.55 X
0.60 X
0.65 X

Table 2. Breaking type at different steepnesses.

Stokes wave is ε̃ =0.32 which corresponds to ε � 0.324 if the secular term ε̃3/8 is
accounted for.

In figure 1 the sequences of the free-surface profiles obtained for different values of
the initial wave steepness are drawn. In the breaking cases, the sequences show the
progressive steepening of the wave profile, followed by the breaking event. At short
wavelengths, surface tension plays an important role contrasting the effects of gravity
and inertia at the free surface. For small amplitude breaking waves, the velocity of
the jet tip is not strong enough and thus surface tension forces prevent the formation
of the jet which is replaced by a bulge developing about the wave crest. After a short
time the bulge begins a rapid motion down along the forward face of the wave and
the breaking results to be of the spilling type (Duncan et al. 1999). It is expected
that surface tension effects also generate capillary ripples in front of the breaker toe.
On the basis of the experimental measurements reported in Diorio, Liu & Duncan
(2008), at such wavelength the maximum thickness of the first capillary ripple is less
than 0.7 mm, which is poorly resolved by the adopted discretization.

For larger wave amplitudes, surface tension forces can only round the tip of the
jet but are not enough to avoid its formation (Brocchini & Peregrine 2001). The jet
plunges onto the free surface ahead, entrapping a large air cavity and leading to
a splash up formation. Then, in a sort of cascade, there are new jet impacts and
other air cavities are entrapped with a progressive reduction of the sizes. Next, the
entrapped air cavities collapse and fragment into smaller bubbles that slowly rise back
towards the free-surface owing to the action of the buoyancy, eventually escaping out
of the water. The sequences also show that the increase in the initial wave steepness
anticipates the first breaking event and makes the intensity of the breaking stronger.
Due to the stronger breaking, the entrapped air cavities grow in size and last longer,
as it is clearly displayed by figure 1(c, d). A more detailed and quantitative analysis
of the air entrainment and of the degassing process is provided in § 3.5.

A more careful look of the free-surface profiles drawn in figure 1(d) indicates that
the first plunging event takes place about t = 2.6 and the second event occurs about
t = 4.8. As shown in the next section, such double event is related to the presence of a
standing wave component associated to the initial conditions. This point is discussed
in further detail in § 3.5 where the occurrence of sudden changes in the area of the
entrapped air are analysed in relation with the corresponding free-surface profiles
(see figure 20).
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Figure 1. Sequences of the free-surface profiles obtained for growing initial wave steepness:
(a) ε = 0.3, (b) ε =0.35, (c) ε = 0.37 and (d) ε = 0.4. In order to help the understanding of the
interface dynamics, profiles are also drawn in the interval x ∈ [0.5, 1.5] by adding a horizontal
displacement to the computed results. The vertical coordinate is multiplied by a factor two
and a vertical shift equal to the corresponding time instant is also applied at each profile.

The different breaking types are characterized by different vorticity production
mechanisms, as it can be seen from figure 2 where the free-surface profiles and
the vorticity contours are drawn for ε = 0.35 and 0.6. In the spilling breaking case
vorticity is mainly generated by viscous effects which induce the flow separation at
the toe and give rise to the shear layer. Instabilities of the shear layer may eventually
lead to the formation of large coherent structures which interact with the free-surface
and produce downstream propagating fluctuations, as it was shown experimentally
by Qiao & Duncan (2001) and numerically by Iafrati & Campana (2005).

In the plunging breaking case, due to the impact of the jet onto the free
surface, a large air cavity is entrapped which is first convected downward and
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Figure 2. Free-surface profiles and vorticity contours at t = 4.0, 4.6 and 5.2 for ε = 0.35
(a, b, c) and ε = 0.60 (d, e, f ). Dashed lines are used for clockwise vorticity. Vorticity contours
are drawn from −15 to +15 with isocurve step 
ω = 1.5.
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then progressively squeezed and eventually fragmented into smaller ones. Next,
the bubbles are gradually pushed back towards the free surface by the effect of
both velocity field and buoyancy. The bubble distribution and the fragmentation
process of the air cavity entrapped by breaking waves were investigated by Deane
& Stokes (2002). They showed that the fragmentation process governs the bubble
size distribution up to bubbles larger than 1 mm. Bubbles smaller than that size
are stabilized by surface tension forces and do not fragment. Although their results
refer to a longer wavelength, about 2.3 m, and to a higher Reynolds number, it is
worth establishing a connection between the numerical results and the experimental
measurements. As aforementioned, the physical size of the cell used in the present
simulations is about 0.6 mm, but due to the use of the transition region for the
density, bubbles smaller than 3 mm cannot be considered as fully resolved. Because
of this limit in the resolution, it is expected that the fragmentation process continues
a little beyond the present results at least for the simulation at higher Reynolds
number.

The plunging of the jet and the closure of the cavity generate a strong clockwise
rotating flow in water. The viscous interaction of these primary vorticity structures
with the surrounding fluid and the interaction with the free surface induce secondary
vorticity structures of opposite sign. Counter-clockwise rotating vorticity is also
generated by the closure of the cavity lying on the forward face of the jet and
by the plunging of backward propagating fronts (figure 24). The generation of the
strong rotational flow in water due to the plunging of the jet and the occurrence of
secondary vorticity structures were clearly explained by Bonmarin (1989) on the basis
of experimental observations. The rotational velocity field about the entrapped air
bubbles is displayed in figure 2(d, e, f ).

It is worth remarking that the use of a smooth variation for the fluid density
and of the continuum model for the surface tension introduces spurious velocity and
vorticity components inside the transition layer. In order to evaluate to which extent
the spurious effects influence the solution, a careful validation and verification study
was performed in Iafrati & Campana (2005). Comparisons with results obtained
by Ohring & Lugt (1991) through a single-fluid boundary-fitted approach were
established. Concerning with the smooth variation of the fluid properties, the study
showed that spurious effects remain confined inside the transition layer and do not
affect the solution outside, provided that the layer is at least five cells thick. As
discussed above, the minimum number of grid cells inside the transition region has
to be larger for simulations at higher Reynolds numbers. For the surface tension
model, it was found that accurate results can be achieved if the thickness of the layer
is not too wide compared to the local radius of curvature of the interface. On the
other hand, the thickness of the layer cannot be too small than, say, five grid cells
in order to ensure a correct evaluation of the interface curvature through numerical
differentiation of the smoothed Heaviside function.

In addition to the vorticity structures generated at the first jet impact, viscous effects
at the free surface induces vorticity also in a later stage. For instance, this is the case
when primary or secondary structures rise back and interact with the air–water
interface, as it can be seen in figure 2(e) about x = 0.2. Such a viscous interaction
generates counter-rotating vortices and a cusp-like free-surface shape where small air
bubbles may eventually be entrapped. The entrainment of air bubbles caused by the
interaction of counter-rotating vortex structures with the free surface was illustrated
by Bonmarin (1989). The importance of the vorticity–free-surface interaction and the
surface renewal processes in the enhancement of the heat and gas transfer between air
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Figure 3. Time histories of the kinetic (solid), potential (dash) and total (dash-dot) energy for
the two non-breaking cases: (a) ε = 0.2 and (b) ε = 0.3. All quantities are non-dimensionalized
by the corresponding initial value.

and water were investigated by Siddiqui et al. (2001, 2004) in the field of microscale
breaking waves generated by the wind–water interaction.

3.3. Role of breaking occurrence on energy dissipation

With the aim of investigating the energy decay processes and the role played by the
breaking on that regard, the kinetic and potential energy are evaluated as

EK = 1
2

∫
d�0

ρ(u2 + v2) dx dy, EP =

∫
d�0

ρy dx dy + 1
8
, (3.5)

respectively, with the constant term 1/8 in the last equation introduced to get zero
potential energy for the flat free surface. The integrals in (3.5) are taken over the
domain with a positive distance from the interface, which is the nominal water
domain. It is worth noticing that, due to the high Weber number of the numerical
simulations, the surface tension contribution to the energy balance is negligible and
is not considered in the following analysis (Chen et al. 1999). The total mechanical
energy of the wave is obtained as the sum of the kinetic and potential contributions
ET = EK + EP .

The time histories of the kinetic, potential and total energies for the two non-
breaking cases, i.e. ε = 0.2 and 0.3, are drawn in figure 3. Data are non-dimensionalized
by the corresponding initial values. The time histories of the kinetic and potential
energies exhibit oscillating components of the same amplitude, opposite phase and
a period of order of 1.28. Per linear theory, the period of the fundamental wave
component is approximately T =

√
2π � 2.5, which is about twice the period of

the oscillating components of the kinetic and potential energies. The behaviour is
consistent with the presence of a standing wave component, of the same wavelength
as that of the fundamental one, superimposed to the progressive wave system. The
comparison of the results obtained for the two different initial steepnesses also
indicates that, relatively speaking, the amount of energy, and thus the amplitude, of
the standing wave component grows with the initial wave amplitude.

A standing wave component associated to the initial conditions (3.1) and (3.2)
was also found by Hendrickson (2004) and Hendrickson & Yue (2006) where a
careful analysis was carried out aimed at finding alternative initial conditions able to
reduce their amplitude. It is worth noticing that the occurrence of the standing wave
component is not affected by the horizontal size of the computational domain. The
use of a computational domain of width equal to the fundamental wavelength λ only
precludes wave components with longer wavelength to be described, whereas does
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Figure 4. Time histories of the total mechanical wave energies for ε = 0.2 (solid) and ε = 0.3
(dash) non-dimensionalized by the corresponding initial values. The theoretical decay rate
(dash-dot) is vertically shifted by a small amount to account for the initial drop in the energy
profiles.

not significantly change the dynamics of the wave components of shorter wavelength.
This statement has been verified in Iafrati (2006) where comparisons between results
obtained for computational domains of width λ and 2λ have been established.

The purpose of the present work is to generate wave breaking flows of growing
intensities and to investigate how the breaking intensity affects the transfer of
momentum, the energy decay processes and the induced circulation. In this respect,
the details of the mechanism inducing breaking are not expected to alter the gross
features of the phenomena.

The time histories of the total energy for the two non-breaking cases are drawn in
figure 4. At the very beginning, the curves exhibit a small drop which accounts for the
energy transfer across the interface needed to accelerate the flow in air. Soon after
the initial drop, the total energy decays smoothly and the numerical results are within
the theoretical estimate ET (t) = ET (0) exp(−2γ t), where γ =2μw/ρwk2 (Landau &
Lifshitz 1959).

With the aim of evaluating to which extent the wave breaking enhances the
dissipation, the time histories of the total wave energy are drawn in figure 5 for several
values of the initial wave steepness. Results in figure 5(a, c) refer to the intermediate
regime, which is from the non-breaking solution ε = 0.3 up to the plunging breaking
case ε =0.4 whereas in figure 5(b, d) results for all the plunging breaking cases, with
steepness ranging from ε =0.4 to 0.65, are shown. Figure 5(a) clearly indicates that
the dissipation of the energy is significantly enhanced by the breaking process and
that, at least in this intermediate regime, the energy fraction dissipated by the breaking
grows very rapidly with the steepness, i.e. with the breaking intensity. In the plunging
breaking regime, although the total amount of energy dissipated by the breaking does
grow with the steepness, as seen from figure 5(d), the fraction of the initial wave
energy dissipated by the breaking is almost independent of it. Similar results were
also found experimentally by Rapp & Melville (1990).

Figure 5(b) indicates that, in the plunging breaking regime, a fraction between 44 %
and 55 % of the initial energy content is dissipated by the breaking within two-wave
periods after the breaking inception. It is worth noticing that the differences in the
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Figure 5. Effect of the breaking intensity on the total wave energy decay. In (a) and (b) the
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Figure 6. Time history of the non-dimensional energy obtained for ε = 0.6 and several
values of the coefficient r in the initial conditions (3.3) and (3.4).

curves are not really related to the steepness but rather to the details of the breaking
process. This is further supported by the fact that the differences found in terms
of energy at the end of the simulations for different wave steepness are within the
uncertainty of the single numerical simulation, as it can be seen from figure 6. In the
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Figure 7. Time histories of the total mechanical wave energies in a log–log diagram. Curves
are drawn for ε = 0.4 (solid), ε = 0.5 (dash), ε = 0.55 (dash-dot), ε = 0.6 (dot) and ε = 0.65
(dash-dash-dot-dot). The straight line is the t−1 decay rate.

figure the time histories of the energy obtained for ε = 0.6 and different shifts r in the
initial conditions (3.3) and (3.4) are drawn.

In figure 7 the time histories of the total mechanical energy for the plunging
breaking cases are drawn in a log–log diagram, along with a t−1 line. The figure
shows that the energy follows the t−1 decay rate, at least during the most energetic
phase of the breaking, whereas all curves approach a lower decay rate after t � 8. A
similar behaviour was found by Lubin et al. (2006).

In the experimental measurements done by Rapp & Melville (1990) and Melville
et al. (2002), it was found that energetic breaking can dissipate as much as 40 %
of the initial energy content and approximately 90 % of such amount is dissipated
within four-wave periods after the breaking inception. Therein it was also shown that
the kinetic energy of the flow and the total vorticity decay like t−1 afterwards. The
numerical results discussed above display a general agreement with the experimental
measurements by Rapp & Melville (1990) and Melville et al. (2002). Quantitatively,
they exhibit a larger fraction of energy dissipated by the breaking and a lower decay
rate of the energy in the very late stage. Although it is expected that the different
methods adopted to generate breaking waves are partly responsible for the differences,
a more careful analysis of the role played by the strongest assumption in the numerical
simulations is needed.

The larger energy dissipation predicted by the numerical simulations cannot be
ascribed to the two-dimensional assumption. Although the hypothesis is rather strong,
it is not expected to change the solution significantly, at least in the early stage after
the breaking inception. In fact, the overturning of the jet and first jet impact are
basically two-dimensional processes. Three-dimensional effects are expected to matter
only in the next stage when instabilities in the cross-direction strongly affect both
the fragmentation process of the air cavity and the dynamics of the large vorticity
structures. It is expected that smaller structures develop which, in a cascade, are
rapidly dissipated under the action of the viscosity at the smallest scales. Owing to the
enhanced dissipation caused by the turbulence, it is expected that three-dimensional
effects, if included, would produce an even larger energy dissipation in comparison
to the two-dimensional results. The above considerations are supported by the results
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presented in Lubin et al. (2006) where a comparison between the time histories of the
energy obtained by two- and three-dimensional calculations is established. Therein it
was shown that up to half-wave period after the breaking onset the energy curves
are very close to each other whereas in a later stage the three-dimensional results
exhibit a stronger dissipation. In the very late stage of the process, when the turbulent
intensity is very low, aside from a different amount of energy left in water, there are
no significant differences in terms of the energy decay rate.

It is worth remarking that three-dimensional effects are also important for the
description of strong vorticity–free-surface interactions. In fact, the three-dimensional
instabilities can generate striations on the free surface which eventually induce the
three-dimensional fragmentation of the entrapped air bubbles (Sarpkaya & Suthon
1991). This has rather a relevant effect on the vorticity field and provides another
mechanism for the entrainment of small air bubbles at the free-surface scars. A
deeper investigation of the above phenomena is beyond the scope of the present
work.

The second strong assumption concerns the low Reynolds number of the numerical
simulations. In order to investigate this aspect it is useful to write the equation of the
energy balance for a fluid with constant density and viscosity. From the momentum
equation it follows that∫

Ω

ρ
∂

∂t

(
|u|2
2

)
dV =

∫
Ω

ρui

[
−uj∂jui − 1

ρ
∂ip +

μ

ρ
∇2ui

]
dV −

∫
Ω

ρu2g dV,

where, as explained earlier, the surface tension contribution has been neglected.
As the velocity field is divergence free, the first two contributions in the first integral

can be recasted in the form of surface integrals whereas the second integral represents
the time derivative of the potential energy. Thus the above equation becomes

dET

dt
= −

∫
∂Ω

ρ
|u|2
2

u · n dS −
∫

∂Ω

pu · n dS +

∫
V

μu · ∇2udV,

where n is the unit normal vector outgoing from the water domain. By using again
the zero divergence of the velocity field, it can be shown that

u · ∇2u = ∇ · [u × ω] − |ω|2,

where ω is the vorticity vector. Hence, the energy balance takes the form

dET

dt
= −

∫
∂Ω

ρ
|u|2
2

u · n dS︸ ︷︷ ︸
kinetic energy flux

−
∫

∂Ω

pu · n dS︸ ︷︷ ︸
work by pressure

+

∫
∂Ω

μ(u × ω) · n dS︸ ︷︷ ︸
work by tangential stresses

− 2

∫
Ω

μ
|ω|2
2

dV︸ ︷︷ ︸
viscous dissipation

, (3.6)

which clearly highlights the terms related to the energy flux through the air–water
interface, the works done by pressure and tangential stresses at the interface and the
viscous dissipation. Unfortunately, the use of a smooth density jump and of a finite
region for the surface tension forces introduces a spurious velocity component within
the transition region. Such spurious component, superimposed to the velocity field,
makes the estimate of the surface integrals in (3.6) not reliable.
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The most interesting aspect of (3.6) is that, aside from the contributions at the
interface, it relates the dissipation in the field to the enstrophy, i.e. the integral over
the fluid domain of the square of the vorticity amplitude. The vorticity level associated
to the initial condition is low and it is concentrated in a very narrow region about
the interface (Longuet-Higgins 1992). Moreover, due to the low density of the air the
works done up to the breaking inception by pressure and tangential stresses at the
interface are not very relevant. As a consequence, there is only a limited damping of
the wave up to the time of breaking onset. This is clearly seen from figure 5(b) which
shows that in all plunging cases the energy follows the theoretical decay rate before the
breaking occurrence. In the early stage after the jet impact, two different phenomena
occur which contribute to the dissipation of energy. The entrapment of the large
air cavity generates a strong rotational flow in water. The diffusion of the vorticity
makes the last term in (3.6) progressively larger. In addition to that, as discussed by
Lamarre & Melville (1991) and more recently by Blenkinsopp & Chaplin (2007), there
is significant amount of work to be done against buoyancy during the downward
transport of the entrapped cavity. Whereas the viscous dissipation is expected to
depend on the Reynolds number, the work done against the buoyancy is expected to
be almost independent of it.

In order to further investigate this point, it is preferable to use a different form of
the energy balance. In fact, although (3.6) is useful as it highlights the role played by
the vorticity on the dissipation, a more common form of the energy balance equation
is

dET

dt
= −

∫
∂Ω

ρ
|u|2
2

u · n dS︸ ︷︷ ︸
kinetic energy flux

−
∫

∂Ω

pu · n dS︸ ︷︷ ︸
work by pressure

+

∫
∂Ω

uiσijnj dS︸ ︷︷ ︸
work by viscous stresses

−
∫

Ω

ε dV︸ ︷︷ ︸
viscous dissipation

,

(3.7)

where, for incompressible fluid, σij = 2μeij with eij denoting the symmetric part of
the strain tensor. In (3.7)

ε = 2μeij

∂ui

∂xj

(3.8)

is the local dissipation. Although in the case of unbounded flows or flows in closed
domains with stationary boundaries it is∫

Ω

ε dV =

∫
Ω

μ|ω|2 dV, (3.9)

form (3.6) would give the wrong impression that the dissipation occurs in regions
with high vorticity. This can be misleading as in regions of quasi-uniform vorticity
there is an almost solid body rotation and hence no dissipation (Frisch 1995).

The viscous dissipation rate is evaluated as

K(t) =

∫
ρ=1

ε dV.

The above integral is evaluated in the pure water domain, i.e. the part of the
computational domain where ρ = 1, so that the spurious velocity components
generated by the artificial density variation do not affect the estimate. The time
histories obtained for different steepnesses are drawn in figure 8 where the dissipation
rate is divided by the corresponding initial energy content in water. The figure shows
that, in the case ε = 0.30 the wavetrain remains regular and the dissipation rate
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Figure 8. Time histories of the total dissipation in the pure water domain for different
steepnesses: ε = 0.30 (solid), ε = 0.35 (dash), ε = 0.40 (dash-dot), ε = 0.55 (dot), ε = 0.60
(dash-dash-dot) and ε = 0.65 (dot-dot-dash). The theoretical curve for a regular wavetrain
and the t−2 decay rate are drawn as well.

exhibits a small reduction with time, which is in close agreement with the theoretical
estimate

1

ET (0)

dET (t)

dt
= −2γ exp(−2γ t)

discussed earlier. When wave breaking occurs, the dissipation grows sharply after
the breaking onset. In the most energetic cases, it takes values about one order
of magnitude larger than those found in the non-breaking regime and such high
dissipation lasts for about one fundamental wave period. Next, the dissipation
approaches a t−2 decay rate, which is consistent with the t−1 decay rate of the
energy experimentally found.

It is worth recalling that the term analysed so far does not consider the contributions
to the energy balance of the energy transfer in air and of the work done by pressure
and viscous stresses at the interface. The results shown on figure 8 indicate that in
all plunging breaking cases the viscous dissipation rate scaled by the initial energy
content takes values around 0.06, between t = 1 and 3.5, i.e. about one-wave period
after the breaking onset. Thus, in that interval, the viscous term can be at most
responsible for the dissipation of 15 % of the initial energy content. This value is
much less than the energy actually lost in all plunging breaking cases at t = 3.5, as
it can be seen from figure 5(b). The additional amount of energy dissipated accounts
for the contributions of the surface integrals in the energy balance and for the work
done in entrapping the air cavity in particular. As aforesaid, the difficulties of the
present model in providing reliable estimates of the surface integrals do not allow a
more detailed investigation of such an important point.

In figure 9 the ε-contours are drawn for the same configurations as of
figure 2(d, e, f ) with the aim of showing the regions where the dissipation is localized.
Countours are only drawn in the pure water domain, which is the region where ρ =1,
thus avoiding the misleading effect of the spurious velocity components occurring
inside the transition region. The figures indicate that the dissipation is mainly localized
in a narrow region about the interface, with the strongest values taking place nearby
the small air bubbles generated by the collapse of the air cavity entrapped by the
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Isocurve step is 
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Figure 10. Time histories of the viscous dissipation rates at different Reynolds number
(a) and of the total energy for the simulation at Re = 105 (b). In both cases results are scaled
by the initial energy content in water. In (a) the solid and dashed lines refer to the simulation
at Re = 104 and 105, respectively. The dash-dotted line is the viscous dissipation rate found at
Re = 105 multiplied by a factor 10. In (b) the dashed line represents the theoretical decay rate
for non-breaking waves Re = 105.

plunging jet. Sharp velocity gradients are induced by the interaction of the rotating
structures with the surrounding fluid at rest.

In order to evaluate the role played by the Reynolds number on the energy fraction
dissipated by the breaking, the numerical simulation for ε =0.55 is repeated by using
Re =105. In figure 10(a) the time history of the viscous dissipation rate calculated for
Re =105 is compared with that found at Re = 104. The curve for the two Reynolds
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number are essentially parallel to each other up to t � 1.3. This is even clearer if the
curve obtained for Re =105 is multiplied by a factor 10 to account for the different
viscosity in the two simulations. The fact that the two curves of the viscous dissipation
scale with the viscosity indicates that the flow fields in the two cases are essentially
the same, at least up to t = 1.3, and, as expected, the viscous dissipation rate is much
smaller at the higher Reynolds number.

Between t = 1 and 2.8, which is about 0.7 wave periods Re =105, the average value
of the viscous dissipation is 0.01. Hence, in that time interval, this effect can be
responsible for the dissipation of only 2 % of the initial energy content. This value is
remarkably less than the amount of total energy lost in the same interval, which is
about one-fourth the initial energy content, as it can be seen from figure 10(b). Again,
this result confirms that viscous dissipation does not significantly contribute to the
energy decay, at least up to about one-wave period after the breaking onset.

In figure 10(b) the time history of the total energy for Re = 105 is compared with
the theoretical decay rate discussed earlier. As already explained, the sudden drop of
the energy is caused by the work done in accelerating the air phase, which is at rest
at the beginning. In the next stage, up to the breaking onset at t � 1, the decay rate
of the numerical solution is a little higher than the theoretical estimate. Although the
difference is less than 1 % at the onset of breaking, the larger dissipation indicates
that the grid resolution adopted is not sufficient yet to resolve the smallest scales and
the numerical scheme introduces some artificial dissipation.

As aforementioned, comparisons with results obtained with a coarser grid, not
shown here, indicate that a satisfactory agreement is achieved in terms of global
quantities. In this sense, although the grid discretization is not enough to resolve the
finest details of the flow, the scales that mainly govern energy and the circulation seem
correctly captured, at least up to half-wave period after the breaking onset. In a later
stage of the process, it is expected that much smaller scales develop which are expected
to influence the dissipation of energy, thus deserving a more accurate description. At
such stage, however, also the three-dimensional effects must be accounted for.

Figure 10(a) indicates that for t > 1.3, the scaled dissipation for Re = 105 is larger
than the viscous dissipation found at Re = 104. On the other hand, as shown in
figure 27, the total amount of circulation in water at the two different Reynolds
numbers is about the same. According to (3.9), a larger viscous dissipation in presence
of a comparable circulation can be explained with smaller structures developing at
higher Reynolds number. The occurrence of smaller structures at the higher Reynolds
number is confirmed by the free-surface profiles drawn in figure 11. Profiles are rather
similar but the solution at Re = 105 exhibits smaller bubbles and drops already at
t = 1.8.

3.4. Vertical transfer of horizontal momentum

With the aim of analysing the vertical transfer of the horizontal momentum, the flux

f (y, t) =

∫ 0.5

−0.5

ρuv dx (3.10)

is evaluated throughout the simulation along several horizontal planes, from y � 0
to y � −0.375, with a vertical spacing of 0.025 among them. In order to avoid
interpolation of the velocity field, the y-coordinate of the planes is assumed equal
to that of the closest cell centres row. The total amount of horizontal momentum
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Figure 11. Free-surface profiles obtained for an initial wave steepness ε =0.55 at t = 1.8 at
Re = 104 ( bottom) and Re = 105 (top). A vertical shift of 0.5 is applied to the profile obtained
at Re = 105 to make the comparison easier.

transferred at a given time t across the y-planes is calculated as

q(y, t) =

∫ t

0

f (y, τ ) dτ, (3.11)

and the corresponding time histories across several planes and for different steepness
are drawn in figure 12.

The figures show that in the most energetic plunging breaking cases the integral
of the horizontal momentum flux across the planes is averagely negative, at least
for the planes with y > −0.2, which is consistent with a net downward transfer
of the horizontal momentum from the upper layers towards the bulk of the fluid
beneath. The comparison among the curves for the same steepness ε at different planes
highlights a delay in the transfer process, with the higher planes being involved earlier
than the lower ones, and a progressive diminishing of the amplitude of the flux going
deeper. The difference in the amount of momentum transferred across two successive
planes represents the portion of horizontal momentum that remains between the two
planes in the form of horizontal current. At least for the case ε = 0.6, and for the
planes lying below y � −0.2, the integral of the horizontal momentum flux becomes
positive in the later stage of the simulation. As it is shown later on, this is due to the
presence of the strong clockwise-rotating structure formed by the breaking process.

A better comprehension of the momentum transfer operated by the breaking can
be inferred from figure 13 where the vertical profiles of q(y, t) are drawn at t =10
and 15. The figures show that, generally speaking, for y > −0.15 the total flux of
horizontal momentum grows in amplitude with the breaking intensity and that the
stronger is the breaking intensity the thicker is the surface layer affected by the
vertical transfer of momentum. Figure 13(b) also indicates that for ε � 0.55 a change
in the sign of q(y, t) occurs for y � −0.15. The downward transfer occurring across
the upper layer is consistent with the presence of a shear flow whereas the change in
the sign, and thus an upward transfer of the horizontal momentum, indicates the
presence of clockwise-rotating vortex structures generated at the breaking onset when
the large air cavity is entrapped (see figure 2). The occurrence of a clockwise-rotating
vortex structure slowly drifting downstream was also experimentally found by Melville
et al. (2002) and numerically studied by Sullivan et al. (2004).
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Figure 12. Time histories of the total flux of horizontal momentum across several horizontal
planes: (a) y � −9.765 10−4; (b) y � −5.176 10−2; (c) y � −0.1006; (d) y � −0.1517; (e) y �
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By introducing the horizontal average of an arbitrary function g(x, y, t) as

〈g〉(y, t) =

∫ 0.5

−0.5

g(x, y, t) dx, (3.12)
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the shear layer and the presence of large vortex structures can be recognized from
the vertical profiles of the horizontal average of the horizontal velocity component
〈u〉(y, t) which are drawn in figure 14 for different steepnesses and two time instants.
It is worth remarking that, since the present analysis is mainly focused on the early
stage after the breaking onset, the current induced by the breaking is still growing in
amplitude. On the basis of the analysis done by Rapp & Melville (1990), this current
should decay in amplitude with time afterwards, although very slowly.

Figures 13 and 14 show that for ε = 0.65 surface layer affected by the momentum
transfer is shallower than the one found for ε = 0.6, although the surface current is
stronger. This can be explained by looking at the vertical profiles of the horizontal
average of the density 〈ρ〉(y, t) that are given in figure 15 for ε =0.55, 0.60 and 0.65
at t =10 and 13. The figures clearly indicate that for ε = 0.65 a much larger amount
of air is entrained compared to weaker breaking cases and, moreover, air bubbles are
convected deeper. As a consequence of the lower density value, in spite of the larger
velocities, a reduced amount of horizontal momentum is transferred to the bulk of
the fluid beneath at a given level and at the same time instant. At t = 15 all the
entrapped air bubbles have left the water and below the still water level the density
is essentially constant for all cases.
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Figure 16. In (a) the time histories of the total area of air entrained by the breaking of
waves of different steepnesses are drawn for the cases ε = 0.40 (solid), ε = 0.50 (dash), ε = 0.55
(dash-dot), ε = 0.60 (dot) and ε = 0.65 (dash-dash-dot). In (b) the total area of air entrained in
the case ε =0.60 (solid) is drawn along with the corresponding area of the unresolved bubbles
As (dash).

The above findings suggest that, if the waves are steep enough, the surface layer
affected by the breaking could actually be narrower for larger amplitudes due to the
role played by the air entrainment. Such important aspects have to be taken into
account in developing and using numerical models for the oceanic boundary layer
like that developed in Sullivan et al. (2004). In that model the occurrence of breaking
is modelled as a forcing term into the governing equations. It is believed that the
above considerations about the role played by the bubbles on the vertical transfer of
momentum are of help for the definition of the forcing term of the breaker model.
This is particularly true for those cases when large air entrainment occurs and the
resulting effects in terms of buoyancy and momentum have to be properly described.

3.5. Air entrainment and degassing process

The detailed set of data provided by the numerical simulations allows a quantitative
analysis of the air entrainment and of the degassing process. In figure 16(a) the
time histories of the total area of air entrained by the breaking event at different
steepnesses are drawn. The curves clearly show the entrapment of the large air cavity
at the breaking onset. After a time interval during which the area remains constant,
the time histories evidence a sharp rise and a subsequent drop. The sharp rise and
drop of the area are related to the plunging of the splash up jet. As the filament of
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Figure 17. In (a) the free-surface profiles at t = 2.0 and 2.7 for ε = 0.60 are compared to show
the entrapment and the subsequent release of a large air cavity operated by the splash-up jet.
In (b) the free-surface profiles for the same simulation at t =5.0 and 5.2 are compared to show
the vertical rise of the air bubbles towards the free surface. In both cases a vertical shift of 0.5
is applied between the two profiles to make the comparison easier.

water that encompasses the cavity is rather thin, it rapidly collapses, letting the air in
the cavity to escape. The above phenomenon can be easily recognized by comparing
the time history of the entrapped air for ε = 0.6, drawn in figure 16(b), with the
free-surface profiles at t = 2.0 and 2.7 displayed by figure 17(a).

Figure 16(a) indicates that, in a later stage, the amount of air entrapped decays with
time. From the free-surface profiles given in figure 17(b) it can be seen that bubbles
gradually rise back towards the free surface and eventually escape from the water.
The above is the primary mechanism for the degassing of the air bubbles. However,
before drawing any quantitative estimate of the degassing process, it is important to
analyse the limits imposed by the adopted grid discretization in connection with the
smallest bubbles.

As explained in § 2.2, the present numerical model cannot describe a closed contour
if the thickness is smaller than one grid cell. Furthermore, due to the spreading of the
density and viscosity jumps across a transition layer of thickness 2δP , bubbles or air
filaments thinner than 2δP , cannot be considered fully resolved. In order to distinguish
between resolved and unresolved bubbles, an average thickness is evaluated. For each
bubble, the average thickness is defined as the ratio between the area of the bubble
and the maximum between the horizontal and the vertical dimensions of the bubble.
A bubble is considered unresolved when the average thickness falls below 2δP . In
figure 16(b) the total area of the unresolved bubbles As is drawn together with the
total area of the entrapped air A. The figure indicates that the area of the unresolved
bubbles is very small compared to the total area up to about half-wave period after
the breaking onset. Next, due to the fragmentation of the air cavity it grows and in
the worst conditions it gets up to one-fourth of the total area.

The artificial degassing of thin air filaments or bubbles operated by the numerical
scheme, can be quantitatively estimated from the total area occupied by water Aw ,
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Figure 19. Time histories of the total area of the entrapped bubbles divided by the area of the
air cavity generated at the breaking onset A0. Results refer to ε = 0.50 ( ), ε = 0.55 �, ε = 0.60
( ), ε = 0.65 ( ). The line represents the exponential decay rate C exp(−3.9(t − tb)/T ), where
tb = 1, T = 2.5 and C = 102.

drawn in figure 18(a) for the case ε = 0.60. The comparison with the corresponding
area of the unresolved bubbles given in figure 18(b) indicates that the sharpest
increase in the water area occurs between t = 2.0 and 4.0, during which the total area
of the unresolved bubbles take the largest values. In total, at the end of the numerical
simulation, the artificial degassing can be estimated in about 3 % of initial water area.

With the aim of deriving a quantitative estimate of the degassing rate, the time
histories of the total area occupied by air bubbles are scaled by the area A0 of the
air cavity entrapped at the breaking onset. Results, drawn in figure 19, are compared
with the decay rate proposed by Lamarre & Melville (1991), who found that the
scaled air volume behaves as C exp(−3.9(t − tb)/T ), where tb is the time of breaking
onset and T is the wave period. In Lamarre & Melville (1991) the constant C = 2.6
accounts for the initial period, duration of which is approximately T/4, during which
the amount of air entrapped remains nearly constant. In the comparison established
below it is assumed tb = 1 and T = 2.5 whereas a different value of the constant
C = 102 is needed to get a better agreement.
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Figure 21. Area of the air cavity entrapped at the breaking onset versus the steepness.

The need of a different constant stems from the longer interval of time during
which the amount of air remains constant in the present simulations. The reason for
that has to be ascribed to the standing wave component. This can be easily seen from
the sequence given in figure 1(d) and more clearly from the free-surface profiles drawn
in figure 20. Due to the standing wave, a second plunging event and a new splash up
occur about one-wave period after the breaking onset. Although this second event is
milder because an important amount of energy has already been lost by the wave, it
leads to the entrapment of new air cavities.

Aside from the different constant, the comparison shown in figure 19 indicates that
the curves follow the exponential decay in the early stage. In a later stage, probably
because of the difficulties of the numerical model in achieving a complete description
of the fragmentation process, numerical results display a lower decay rate.

In order to achieve a quantitative estimate of the effects of the breaking intensity
on the amount of air entrapped, in figure 21 the area of the air cavity entrapped
at the onset of the stronger breaking cases versus the steepness is drawn. The data
indicate that, for the range of steepnesses considered here, the area of the air cavity
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Figure 22. Time histories of the minimum y-coordinate of the bubbles. Results refer to
ε = 0.55 (solid), ε =0.60 (dash) and ε = 0.65 (dash-dot).

entrapped by the first breaking event grows as ε7. At present it is not possible to
estimate to which extent such relation depends on the initial conditions adopted
here.

As discussed in the previous section, the downward transfer of momentum depends
not only on the amount of air entrapped, but also on the depth of the bubbles. In
figure 22, the time history of the minimum y-coordinate of the air bubbles is drawn
for the three stronger breaking cases. The curves indicate that stronger breaking
event pushes the air much deeper. This is due to the combined effects of the larger
cavity entrapped at the first plunging event, i.e. a larger rotating structure, and of
the stronger velocity. Bubbles remain at the minimum y-coordinate only for a short
time as they are pushed back towards the free surface by both the buoyancy and the
upward velocity induced by the clockwise-rotating structure.

3.6. Rotational flow induced in water

As seen before, the occurrence of breaking generates a strong rotational flow in
water. Depending on the breaking intensity, vorticity can be generated by either
viscous effects, as it happens in the spilling breaking type, or inviscid mechanisms,
like the reconnection process in the plunging breaking type. In the latter case, as
shown in figure 2 (d, e, f ), in addition to the primary circulation generated by the
topological change, strong secondary vorticity structures, of opposite sign, may appear
as a result of the viscous interaction of the primary structures with the surrounding
fluid at rest.

On the basis of the above considerations, a better understanding of the vorticity
field induced by the breaking process can be achieved distinguishing between positive
and negative values. To this aim, the circulations associated to the positive and
negative vorticities, denoted by ΓP and ΓN , respectively, are defined as

ΓP =

∫
ρ=1

max(0, ω) dV ΓN =

∫
ρ=1

min(0, ω) dV. (3.13)

Integration is carried out over the pure water domain in order to avoid any misleading
effect induced by the spurious velocity component taking place within the transition
region. The time histories of the circulations associated to the positive and negative



Effects of the breaking intensity on wave breaking flows 403

–0.18

–0.16

–0.14

–0.12

–0.10

–0.08

–0.06

–0.04

–0.02

(a) (b)0

0 2 4 6 8 10 12 14 16

ΓN ΓP

t
0 2 4 6 8 10 12 14 16

t

0.30

0.35

0.37

0.40

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.30

0.350.37

0.40
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and ε = 0.40 (dot). In this range of variation of the initial wave steepness, the resulting wave
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Figure 24. Free-surface profiles for ε = 0.40 at t =3.6 (bottom) and 3.7 (top). A vertical
displacement of 0.2 is applied to the profile at t = 3.7.

vorticity for the different values of the initial wave steepness are drawn in figures 23
and 25.

In figure 23 curves refer to wave steepnesses ranging from ε =0.30 to 0.40, i.e. the
intermediate region where the final wave system changes from regular to spilling and
plunging breaking regimes. According to this change in the flow, a significant variation
of the negative circulation generated in water occurs. The comparison among the time
histories of ΓN , drawn in figure 23(a), shows that the transition from the spilling to
the plunging breaking regime, taking place between ε = 0.35 and 0.37, causes a sharp
increase in the amount of negative vorticity generated in water. This clearly indicates
that the free-surface reconnection that characterizes plunging breaking events is a
very efficient mechanism for vorticity production. The positive circulation, shown in
figure 23(b), exhibits a more irregular behaviour and is much lower than the negative
one. For ε up to 0.37, there are no significant changes among the different steepnesses.
Different considerations deserve the case with ε =0.40, in which a sharp growth in the
positive vorticity occurs about t = 3.7. Such a rapid increase in the circulation is again
related to a reconnection process at the free surface as it can be seen from figure 24
where the free-surface profiles at t = 3.6 and 3.7 are drawn. The solution at t = 3.6
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Figure 25. Time histories of the negative (a) and positive (b) circulations in the water domain
obtained for several initial wave steepnesses in the plunging breaking regime: ε = 0.50 (solid),
ε = 0.55 (dash), ε = 0.60 (dash-dot) and ε = 0.65 (dot).

shows the air cavity generated by the first plunging event. The rotating structure
leads to the formation of a cusp on the free-surface profile. The clockwise-rotating
flow makes the cusp deeper and beyond a certain limit, the free surface on the right
of the cusp plunges on the free surface on the left and leads to the cavity closure.
Such reconnection process is responsible for the generation of the positive circulation
around the cavity taking place about t = 3.7 in figure 23(b). However, owing to the
smaller size of the cavity and to the lower velocity of the backward propagating
front that causes the free-surface reconnection, the positive circulation generated by
that process is about an order of magnitude smaller than that generated by the first
plunging event.

In order to analyse the changes induced by the breaking intensity, the time histories
of the circulations found in the plunging breaking regime are drawn in figure 25.
For ε � 0.5, curves of ΓN are very close to each other in the early stage after the
breaking onset, aside from the case ε =0.65 in which the maximum of negative
circulation takes a much larger value. Differently from the negative contribution, the
total amount of positive vorticity displays a general growth with the initial steepness
not always monotonic, though. Relatively speaking, the maximum amplitude of the
positive circulation is much larger than that found in the intermediate regime. For
the highest steepnesses, the peak value is as large as 40 % of the corresponding peak
of the negative circulation.

The above analysis does not account for the different breaking intensity. With the
aim of achieving a fairer comparison, the circulation associated to the negative
vorticity is divided by the velocity jump (uc − ut ) between the velocity at the
crest uc and the velocity at the trough ut . The corresponding time histories are
drawn in figure 26. Such a scaling makes even clearer the increase in the vorticity
production occurring as the breaking changes from spilling to plunging. Furthermore,
results indicate that in the most energetic phase of the breaking in all the plunging
cases, i.e. ε � 0.37, the ratio is within 0.3 and 0.5, independent of the initial wave
steepness.

Finally, in order to evaluate the effect of the Reynolds number on the circulations,
results found at the two Reynolds number for the case ε =0.55 are drawn in figure 27.
Also in terms of positive and negative circulations, the Reynolds number does not
seem to play a relevant role, at least up to about t = 2.5, i.e. about half-wave period
after the breaking onset.
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Figure 27. Time histories of the circulation associated to the negative (a) and positive (b)
vorticities obtained for ε =0.55 at Re = 104 (solid) and Re = 105 (dash).

3.7. Uncertainty of the results and intermittency

Results presented above are obtained with single numerical simulations of the time
evolution of wavetrains of different initial steepness. Owing to the strong nonlinearity
of the flow, it is important to estimate to which extent solutions are affected by small
perturbations in the initial conditions. In the experiments, it is a usual practice to
perform several repetitions of the test and to establish an ensemble average among
the measurements. The residual motions of the free surface and of the fluid are strong
enough to introduce measurable changes. In the numerical case, the perturbation has
to be explicitly introduced otherwise no differences can be found.

Here, the numerical simulation for the case with ε = 0.60 is repeated 10 times
using different values of the parameter r in the initial conditions (3.3) and (3.4). The
phase shift in the initial conditions, although smaller than the grid spacing, causes
relevant changes to the dynamics of the breaking event and thus to the size and the
distribution of the air bubbles. In order to quantify these differences, an intermittency
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Figure 28. Contours of the intermittency factor Ī (x, t) at several time instants. From top to
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factor is introduced as the ensemble average of an index I (x, t) defined as (Brocchini
& Peregrine 2001)

I (x, t) =

{
1 d � 0,

0 d < 0.

In figure 28 the contours of the intermittency factor Ī (x, t) (overbar denotes
ensemble average) are drawn at several instants of time. In a linear problem, the
interfaces, which are at the level d = 0, would be simply shifted in the horizontal
direction by the same amount of the initial conditions. Correspondingly, the
intermittency region, i.e. the region where 0 < Ī (x, t) < 1, should be narrower than
the cell size. Figure 28 shows that this is true up to the breaking inception only. As
soon as the jet plunges onto the free surface, more relevant differences occur in terms
of size and distributions of the entrapped bubbles, thus leading to a much wider
intermittency area. Differences are originated by the strong nonlinearities of the flow
which are triggered by the changes introduced by the peculiarities of the numerical
algorithm in the treatment of the fragmentation and reconnection processes of the
interface on a discrete grid. In a later stage, the large air cavity breaks into smaller
ones that rise up, eventually exiting the water, and the intermittency region shrinks,
although remaining remarkably larger than the grid cell.

In order to get a more quantitative understanding, in figure 29 the time history
of the intermittency area is drawn. The figure shows that the intermittency area is
essentially zero until the breaking onset and sharply grows after the breaking onset,
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Figure 29. Time history of the area of the region with 0 < Ī (x, t) < 1.
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Figure 30. Time histories of the negative (a) and positive (b) circulations in the water domain
obtained in the case ε = 0.60 for different values of the parameter r the initial conditions (3.3)
and (3.4).

reaching its maximum at t � 3. As the large air bubbles disappear, the intermittency
area drops to about 40 % of the peak. It is interesting to note that a similar behaviour
was found experimentally by Duncan (see the discussion in Iafrati 2006).

Owing to the differences in the bubble dynamics, also global quantities like energy
and circulation are expected to change. In order to have a rough estimate of the
corresponding uncertainty, in figure 6 the time histories of the total energy of the
simulations are all drawn together. The figure shows that results are rather close to
each other up to the breaking onset. Next, the total energy at a given time is scattered
across a region size of which rapidly grows with time. The growth lasts up to about
two fundamental wave periods after the breaking inception whereas for t > 8, the
maximum difference between the curves is almost constant, to about 10 % of the
initial energy content.

As discussed in the previous section the entrainment of air bubbles and the
corresponding free-surface reconnection processes significantly affect the vorticity
production in water. A quantitative estimate of the role played by small changes
in the breaking dynamics can be inferred from the time histories of the positive
and negative circulations shown in figure 30. The comparison between the curves in
figure 30(a) indicates that the uncertainty in the negative circulation takes the largest
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values during the most energetic phase of the breaking process, with a maximum
difference of 
Γ ∼ 0.15. Soon after, the results become much closer to each other
and the maximum difference drops to 
Γ ∼ 0.05 and remains constant afterwards.
Differently from the negative circulation, the uncertainty in the positive circulation
displays a fast growth up to the most energetic phase of the breaking process and
remains constant later on. It is worth remarking that although the maximum difference
at the end of the numerical simulations is about the same, with 
Γ ∼ 0.05, relatively
speaking the difference is larger for the positive circulation. The above findings further
support the conjecture on the basis of which the generation of the negative vorticity
is strongly related to the initial conditions whereas the positive circulation, which is
mostly related to the secondary entrapment of air bubbles, is more dependent on the
details of the entraining process.

4. Conclusions
The unsteady wave breaking flows generated by periodic wavetrains of different

amplitudes have been simulated through a two-fluids numerical approach. The study
has been focused on the analysis of the role played by the breaking intensity on free-
surface dynamics, air entrainment, energy dissipation, vertical transfer of momentum
and vorticity.

The use of the numerical tool has allowed a direct evaluation of the viscous
dissipation. In the most energetic phase of the breaking, the dissipation is seen to
be localized about the entrapped air bubbles. It has been shown that the viscous
dissipation, obtained as the integral of the local values, is characterized by a sharp
growth soon after the breaking inception. For the numerical simulation at Re =104,
the dissipation rate in the most energetic phase of the breaking process is found
to be one order of magnitude larger than that in the prebreaking stage. The most
energetic phase of the breaking lasts about one-wave period. After this phase, the
total dissipation decays as t−2.

In order to estimate to which extent the results are affected by the low Reynolds
number of the simulations, for one wave steepness the numerical simulation has
been repeated using a larger Reynolds number. It has been shown that, up to about
half-wave period after the breaking onset, the viscous dissipation scales with the
viscosity, thus implying that the flow field in the early stage of the breaking is not
strongly dependent on the Reynolds number. In the next stage, the viscous dissipation
grows faster than for low Reynolds number because of the smaller structures. At that
stage, however, the three-dimensional effects, neglected in the present work, become
relevant.

The downward transfer of horizontal momentum has been analysed. The total flux
of momentum transferred across several horizontal planes located at different depths
has been evaluated and the occurrence of the surface current induced by the breaking
has been highlighted. It has been shown that the amount of horizontal momentum
converted into surface current grows with the breaking intensity. However, beyond
a certain limit, the larger amount of air entrapped, and thus the lower value of
the average density, causes a reduction in the amount of momentum transferred
downward. This implies that, for large steepnesses, the layer affected by the breaking
event becomes narrower. Such findings are believed to be relevant in the definition of
the source term in oceanic boundary layer models.

The air entrainment and the degassing process have been described in detail. The
total area of the entrapped air bubbles has been evaluated and several of the basic
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phenomena have been qualitatively described on the basis of the free-surface profiles.
It has been shown that the area of the air cavity entrapped by the plunging jet at
the onset of breaking grows with the initial steepness as ε7. A further investigation
is needed to evaluate to which extent this result depends on the initial conditions
adopted here.

The vorticity field induced in water by the breaking process has been carefully
analysed. A distinction has been made between the circulations associated to the
negative and positive vorticities. It has been shown that, in the spilling breaking
case, vorticity is mainly generated by viscous effects taking place at the toe of the
bulge. In the plunging breaking case, the reconnection process has been found to be
a much more efficient mechanism of vorticity generation. It has been shown that the
circulation induced by the first plunging event scales with the crest-to-trough velocity
jump. In the most energetic phase of the breaking process, i.e. the phase with the
largest amount of entrapped air, the ratio is about 0.3–0.5. At least up to half-wave
period after the breaking onset, the primary circulation is almost independent of the
Reynolds number.

With the aim of estimating the uncertainty in the numerical results, several
repetitions of the same simulation have been done introducing a small perturbation
to the initial conditions. It has been shown that the primary circulation is
rather repeatable whereas, relatively speaking, a larger uncertainty characterizes the
secondary circulation, thus indicating that the latter is more dependent on the details
of the bubble entrainment process. In addition to the total circulations, the uncertainty
in the free-surface location has been evaluated. It has been found that results are
rather repeatable up to the breaking inception, with the size of the uncertainty region
comparable to the initial perturbation. As soon as the breaking develops, the strong
nonlinearities of the problem induce a much larger scatter in the free-surface location.
The intermittency area undergoes a sharp growth and takes the maximum values in
the most energetic phase of the breaking process. In the next stage, when the largest
air bubbles disappear, the region of intermittency shrinks and the total area diminishes
up to a constant value about 40 % of the peak.
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